
   
 

Multi-Objective Optimization in pSeven 

I. Overview 

There are two different approaches for multi-

objective optimization (MO): 

  - Global MO – finding the variety of non-

dominated points (Pareto frontier in objective 

functions space and respective Pareto set in 

design space) 

  - Local MO – finding a single non-dominated 

solution (can be closest to the initial guess). 

Pictures below illustrate the key difference 

between these two approaches: 
  

 

 

               

Methods implemented in pSeven combine local 

and global interpretations of multi-objective 

optimization to produce efficient algorithms of 

Pareto frontier discovery. The need for such 

combination is explained by one of the main 

problems in solving multi-objective cases. 

Typically, a Pareto set is not localized, and thus 

global methods should be applied to approximate 

the whole Pareto frontier. This causes the 

evaluations far away from Pareto variety, which is 

computationally expensive. 

The basic principle of multi-objective optimization 

in pSeven is that in the majority of cases Pareto 

optimal set could be described as a union of 

compact (in objective space)continuous 

components, all of them allowing differential-

geometric description in case of continuous 

objective functions. Therefore, it is enough to find 

any optimal point for a single connected 

component and then perform incremental local 

spreading from the known optimal solutions in the 

tangent plane to Pareto set. New points 

generated this way are not precisely optimal, 

because Pareto set is not a hyper plane. 

However, the corresponding distance to 

optimality is small, so resources required for a 

subsequent optimization are minimal. As for the 

multiple connected components, their sequential 

discovery is already built into the described 

strategy, provided that a single point optimization 

always finds the nearest Pareto optimal solution. 

Due to the negativity of Pareto frontier slopes in 

space of objectives, the algorithm eventually 

discovers all the connected components if it had 

been started from the points minimizing each 

particular objective (anchor points). 

 

Therefore, there are two primary components of 

pSeven multi-objective optimization: 

 - Local algorithm to reach Pareto optimal set, 

finding the nearest optimal solution. 

 - Pareto frontier discovery: spreading along 

optimal manifold (with a new optimization in 

case of curved Pareto set) with optimal points 

distribution kept even. 



   
 

     First, multi-objective optimization algorithms 

of pSeven searches for a small number of strictly 

Pareto optimal solutions. In theory, any optimal 

set could be used, but for the reasons explained 

above anchor points are the most convenient 

points to start optimization. 

By definition, there are exactly K anchors for a 

problem with K objectives. 

k-th anchor is defined as minimizer of k-th 

objective function with no regard to other 

objectives (all relevant constraints remain 

imposed). As a byproduct, the set of anchor 

points also provides raw estimate of Pareto 

frontier extent along objective axes. Along with 

user-provided number of optimal points to be 

finally generated, this gives the minimal 

objective space distance to be used at spreading 

stage (see below). 

       Second, algorithm performs sequential 

spreading along the optimal manifold from all 

currently discovered optimal solutions. To this 

end, Pareto set local geometry is reconstructed, 

prime purpose being to determine tangent plane 

at current optimal solution. Then, the algorithm 

generates a number of new (not optimal in 

general) points by shifting along basis axes of 

tangent plane from initial optimal position, until 

the corresponding objective space separation 

becomes of required order (see above). If there 

are already discovered optimal solutions close to 

the proposed new position, the attempt is 

discarded. Otherwise, new point is accepted and 

(if necessary) is pushed back to optimality. 

Process iterates until no missed optimal solutions 

remain. 

 

 

 

 

 

 

Process illustration 

 

                         Stages in detail 

1. Anchor search stage 

Proper determination of anchor points constitutes 

an essential part of the method. In terms of 

implementation, it is almost equivalent to a single-

objective optimization and hence could be 

performed with standard pSeven algorithms. 

Anchors are used to estimate the Pareto frontier’s 

global geometry and as starting points for 

scattering process. 

 

2. Re-optimization of scattered candidates 

This stage is performed using either steepest or 

QN descent algorithms. Due to the sufficiently 

small deviation from optimal variety, pushing 

candidate solutions back to optimality is not an 

expensive procedure, and steepest/QN descent 

fits well. 

 

3. Scattering process 

Let us consider the procedure of finding the 

optimal descent in the unconstrained case M=0 

to explain what is a local Pareto set geometry and 

how it is reconstructed. 

Constraint |𝑑|
∞

≤ 1 could be traded for the term 

1/2|𝑑|2 in objective function. Then dualized 

optimal descent problem reads: 
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with positive semi-definite Hessian 𝐺𝑖𝑗 = (∇𝑓𝑖 ⋅

∇𝑓𝑗). For locally optimal solution  𝐺𝜆∗ = 0, ⟹

rank𝐺 ≤ 𝐾 − 1, and in general, there is rank𝐺 =

𝐾 − 1 , confirming that frontier’s  dimensionality 

is  𝐾 − 1. Therefore, one of eigenvectors of G 

determines optimal descent direction, which 

disappears at locally optimal position 

(corresponding eigenvalue becomes zero as 

well). What are the remaining eigenvectors  

𝜆(𝛾) of  𝐺? 

One can show that 𝑡(𝛾) = 𝜇(𝛾)
−1/2 ∑𝑖 𝜆𝑖

(𝛾)
∇𝑓𝑖𝛾 =

1, . . . , 𝐾 − 1 provides an orthonormal basis in 

Pareto set tangent plane (Pareto frontier tangents 

are 𝜆(𝛾)). Here, 𝜇(𝛾) are the corresponding 

eigenvalues, 𝐺𝜆(𝛾) = 𝜇(𝛾)𝜆(𝛾).  

The above construction generalizes trivially to the 

case of active constraints. Namely, let 𝒫𝒜  be an 

orthogonal projector onto the tangent plane to all 

active constraints (including active box bounds): 

𝒫𝒜
2 = 𝒫𝒜𝒫𝒜∇𝑐𝑖 = 0𝑖 ∈ 𝒜 

Then the analysis of Pareto frontier’s local 

geometry goes through with the only change 

∇𝑓𝑖 → 𝒫𝒜∇𝑓𝑖 . To proceed, we assume that for 

the infinitesimal shift in Pareto set tangent plane 

𝑥 = 𝑥∗ + 𝜖𝑡(𝛾) sub-optimality of 𝑥 is of order 𝑂(𝜖). 

Then it only remains to push x back to optimal 

position, which is rather cheap (still close of 

optimal set!). And it is necessary then to decide 

how to choose ϵ in order to make the described 

approach reasonable from a practical standpoint. 

Size selection step in pSeven is implemented 

with the following strategy: 

- End-user is required to provide single 

number 𝑁𝑓  specifying how many points 

he or she needs to have on the Pareto 

frontier as a result. 

- Method estimates the extent of Pareto 

frontier 𝐿𝑖 along each axis in objective 

space (anchor search stage) 

- Objective space is subdivided into non-

overlapping boxes of size   𝑏𝑏𝑖 =
𝐿𝑖

𝑁𝑓𝑖
=

1, … , 𝐾 

- Ultimate goal is to have no more than one 

solution in each box 

Hence, the appropriate strategy to select value of 

ϵ  parameter is as follows: objective space points 

𝑓(𝑥∗) and 𝑓(𝑥∗ + 𝜖𝑡(𝛾)) should belong to the 

neighboring boxes. 

 


